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Using a previously proposed method to allow for singularities of the solution at comer points of a compound elastic waveguide, 
which employs the generalized orthogonality property of normal modes, an analysis is presented of the frequency dependence 
of the energy reflection and transmission coefficients at the vertical joining line of the half-strips, and of the structure of the 
energy fluxes in its neighbourhcod in the so-called energy capture range. In this situation there is a phenomenon of energy vortices 
partly overlapping the energy flux, leading to an increase in the energy reflection coefficient. O 1997 Elsevier Science Ltd. 
All rights reserved. 

Methods of solving problems encountered in the transmission of elastic wave energy through the 
interface of a compound waveguide have seen considerable development, progressing from the 
collocation method [1] to more accurate methods, based on using generalized orthogonality relations 
of homogeneous solutions [1]ma technique first employed in [3, 4] and generalized to waveguides with 
stepped interface :rod vertical defects in [5]. However, the solution of the problem of a vertical interface 
in a waveguide has been complicated by the fact that, when certain properties of the materials occur 
in combination, or when there are defects at the interface, the stresses at the corner points involve 
singularities of the boundary-condition type, and the series representing the stresses diverge over finite 
intervals at the interface ([6-9], and so on). 

In the case of ~aa elastic half-strip, various ways have been devised to overcome these difficulties, 
ranging from the use of generalized sums of divergent series [9] to the explicit determination of the 
singularity [8, 10], ,or by allowing for the asymptotic behaviour of the unknowns of the expansion dictated 
by the index of the singularity [11]. A generalization of the method of determining the singularity to 
the case of compound waveguides, which essentially uses the generalized orthogonality property of 
the normal mode,;, was proposed in [12]. In this paper, based on that approach, we will analyse the 
transmission and reflection of energy, averaged over an oscillation period, in a compound stepped 
waveguide with a free surface. We will consider both the frequency dependence of the transmission 
and reflection coefficients, and the structure of the energy fluxes near the line of the end face. 

1. We will consider steady oscillations of a free compound elastic waveguide consisting of two joined 
half-strips -** < x ~< 0, 0 ~< z ~< hi (the first medium) and 0 ~< x < -0, 0 ~< z ~< h2 (the second medium) 
with different properties: density pj, Lam6 coefficients ~ and ~tj and Poisson's ratio vj, wherej  = 1, 2 
represents the firslt or second medium, respectively. To fix our ideas, let hi > h2. The source of the oscil- 
lations are travelling waves u0 e-/°r arriving either from a load q(x)e -/°r applied to the surface 
z = hi of the left half-plane in a domain fl, or from infinity. The factor e -/=t will henceforth be omitted. 

The outer surface of the waveguide is stress-free 

"In, j = 0 ,  Z=0; Tn. j=q(x) ,  z=hj ,  q(x)=0, x ~ [ l  

O x . l ( O , z ) = % z . l ( O , z ) = O ,  h 2 <- Z<~ h~ 

where "In' = (x.~, ':~zj) is the vector of stresses on the horizontal surface. 
In addition, ~l~e following conditions are satisfied on joining line of the half-strips 

ut(0, z)=u2(0,z), 0~z<~h 2 

C~x. l (O,z)=Ox.2(O,z) ,  "Cxz.l(O,z)=xxz.2(O,z),  0 < - z<~ h 2 
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Let ul + u0 denote the displacements in the first medium and u2 those in the second medium; u0 
denotes the displacement field of the incident wave and Ul that of the reflected wave. 

The displacement fields can be expanded in terms of normal waves (henceforth throughout summation 
is from 1 to **) 

Ul(X,Z) = ~',tlmalm(z)e -ial"x, u2(x,z)= ~t2ma2m(z)e  -ia2"x (1.1) 
/tl m 

a i m  (Z)  = 1 (-l)J+lol.jmPjm(z)l 
A~(ajm)  iRjm(z) 

The eigenvectors ajra are expressed in terms of the components of the symbol of Green's matrix of 
a free elastic layer otPj(ct, z)/A(ot), Rj(ct, z)/A(0Q (we are using the notation of [13]), P~m(Z) = P;(O~m, Z), 
Rim(Z). . = Rj(O~m,. z); the prime denotes differentiation with. respect, to z.. The wave-numbers'. ~im are 
Identical with the poles of the elements of Green's matrix (with zero of its denominator) and tim are 
the unknown expansion coefficients. 

Series (1.1) contain both symmetric and antisymmetric modes: the wave for m = 1 is symmetric, the 
waves for m = 2 and 3 are antisymmetric, for m = 4, 5 symmetric, and so on. 

In the analogous representations for the vector of stresses xj(x, z )  = (o~,j, x=,j), the vectors aim are 
replaced by 

= 1 [ - i ( L j  +2pj)(X~mPjm(Z)+i~jR;m(Z ) [ 
bjm(Z) A~((Xjm) ] (-1) j+ I.tj(Xjm(Pj'm(z)+Rjm(Z)) 

For the case of a wave arriving from infinity 

. . iatmx ~ " " i O t l m X  (1.2) 
U 0 = a 0 m L Z ) e  , "C 0 =DOm(z)e 

where m = 1, 2 , . . .  is the number of the incident wave, a0m differs from aun in the sign of the first 
component, and b0m differs from bun in the sign of the second component. 

Let us consider an auxiliary problem for isolated half-strips of equal thickness, on the assumption 
that the displacements vj and stresses tj (j = 1, 2) are prescribed at the ends, and a wave u0 propagates 
in the first medium. This problem is overdetermined. 

If we assume that vj and tj belong to 1,2([0, h]), the method described in [2] yields exact solutions of 
the auxiliary problem. When the stress has a singularity at the corner points x = 0, z = 0 and z = h, 
the series for xj(x, z)  diverge in the neighbourhood of both points. However, this is of no significance 
when one is investigating energy propagation: it is sufficient that the boundary conditions hold in the 
mean-square sense. 

To obtain a solution [2], multiply the boundary condition for the first component of the displace- 
ments by b~)(the first component of the vector bjk) and subtract the condition for the second component 
of the stre~es multiplied by a(2k ). The other conditions are transformed in the same way. 

Using the generalized orthogonality conditions [2] 

]1 
S i- . , ( l )h( l )  ( 2 ) . ( 2 )  1 .  t~,jm,~jk - a j k  Ojm Jaz = O, k ~ m 
o 

we obtain 

tjm =~(--I)P rr. (1) h(l)~_{,(p)  . ( P ) ~ _ R  ((U(Ol),k(l)~.lmJ_X~ Ola.(p),~,lm~(p)~l/jj dj  m t~,,,j ,u jm/  x,j ,t*jm I Vjl 

h {1, 1=2, 
_(^0) ~(l)~ ,_(2) b(2)~ ( f , g ) = [ f g d z ,  1=1,2, p=  d j m  - . U j m '  Ujm J - LUjm ' - j m  / '  

0 2, 1=1. 

(1.3) 

Thus, the solution of the auxiliary problem requires only two boundary conditions; equating the right- 
hand sides of equalities (1.3) for different l, we obtain the "compatibility conditions" that the boundary 
conditions must satisfy if the auxiliary problem is to be solvable 
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( v j , b j m ) -  (xj,ajm) = i~jl[(U O ,b jm) -  ( t  O,ajm)] (1.4) 

(f, g) = (f(1), g(1)) + (f(2), g(2) ) 

Substituting the boundary conditions of the original problem vl = v2, t l  = t2 for the case of  half- 
strips of  equal thickness (h i = h 2 = h) into (1.4), we obtain two independent infinite systems of linear 
algebraic equatious for the unknowns tim 

(1.5) 

t, j = 2 ,  
j = i , 2 ,  l =  , n = l , 2  .... 

2, j = l ,  

We need solve only one of systems (1.5), fo r j  = 1, l = 2 or fo r j  = 2,1 = 1. The other unknowns may 
then be determined using formulae (1.3), i.e. the system splits into two independent subsystems, 
considerably reducing the volume of computations. In the general ease when hi * h2, Eqs  (1.5), besides 
becoming slightly more complicated, are no longer independent for different j,  and one then has a single 
system but  of twio~ the dimensions. 

To take the singularities of the stresses into account, one can separate out the factors with singularities 
in explicit form in the unknown stresses tl = t2 = t and expand these stresses in a series of Jacobi 
polynomials 

:') = X P(.')zl/), o <- z <- h~ (1.6) 
It 

t=O, ~<z~<h~ 

• i(~,t) ~,, ~ = -2z I hE + I, 0 ~< z ~</~ 

where Z (0 are unkllown constants and P(~*' v2)(~) are Jacobi polynomials; the order of the polynomials, 
i = i (n ,  1), is chosen so that the evenness or oddness of each term in expansion (1.6) is the same as in 

~/) . . . . . .  
the expansion in normal waves bin; ?l and ?2 are the radices of the smgulanties of  the stresses,t which 
have already been determined [14]. It is also very important that t is defined as zero on the free surface 
of  the step. 

Substituting these expansions into (1.3) and into the as yet unused boundary conditions vl = v2 (for 
h i # h2) we obtaki an infinite system of four groups of linear algebraic equations for the four groups 
of  unknowns tim , X(m 0 (j, l = 1, 2) 

• < - , ) . r e  
" '  : a-7~-.m Lt x <""'<'J"), <"'*'<'*')T- 

o<,,+,, ,,,,.<,,.<,,, , .  :<.,,1 -- "n A,n ,--jm ) --~,--*1 I, ltO , V y m I J + S j l t ~ ' O  ' ' j m  I J ,  j , l= l , 2 ,  
7.# 

r =  n = l , 2  ..... 
P =  2, l = l ,  2, j - -L  

(s,~), : ~ :~dz, (:,~)T : I :~dz 
o h: 

2. The total energy flux, averaged over an oscillation period T = 2~o), through a surface S is given 
by the expression 

tGLUSHKOV, Ye. V. ~ad GLUSHKOVA, N. V., On a singularity of the solution at comer points of compound elastic waveguides. 
Moscow, 1991. Deposited at VINITI 19.02.91, No. 824-V91. 
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E = ~ endS 
s 

where e, is the projection of the energy flux density vector onto the normal n to S. For a cross-section 
of the waveguide with normal n = (0, 1) 

Ex,j=h/ ex,jdz, ex,J=2Im('cj,u ]) 
o 

It has been shown [1] that for the joint of half-strips of equal thickness, in the frequency range where 
the number of travelling waves in the left half-strip exceeds that in the right half-strip, the interface 
effectively becomes a reflectorma phenomenon known as "energy capture". Figure 1 plots the energy 
reflection coefficient against frequency for various thicknesses of the left half-strip. It is obvious that 
an analogous phenomenon will occur for half-strips of different thicknesses. Outside the domain of 
energy capture, for the h2 values shown in Fig. 1, the step at the interface has practically no effect on 
the energy transmission. 

The parameters of the media for Fig. 1 were chosen to be those of [1] (in dimensionless form): ~tl 
= 1, ~t2 = 0.93480, Pl = 1, P2 = 0.6162, vl = 0.24, v2 = 0.3, hi = 1. The solid curve corresponds to the 
joint of half-strips of equal thickness, the dashed curve to the ease h2 = 0.9hl and the dash-dot curve 
to the case h2 = 0.85hl. The results for hi = h2 agree with those in [1]. Another criterion for the 
correctness of the results was numerical verification of the energy balance and the boundary conditions 
on the joining line. 

For half-strips of equal thickness, the computations allowed for two pairs of non-uniform waves. The 
error in the satisfaction of the boundary conditions at the joint was then of the order of a few percent. 
As it turned out, to investigate the energy flux in this case it was not at all necessary to take non-uniform 
waves into consideration: even if such waves were ignored, the reflection coefficient remained almost 
unchanged in value. Allowance for a singularity in the stresses when the half-strips are of equal thickness 
does not affect the values obtained for the energy flux. It only increases the accuracy with which the 
boundary conditions are satisfied--for combinations of media in which singularities occur. However, 
allowance for non-uniform waves and the structure of the stresses becomes very important when the 
half-strips area of different thickness: if the representation (1.6) is not used, the necessary accuracy 
cannot be achieved. 

3. Energy streamlines are curves, the tangents to which at each point coincide in direction with the 
density vector of the total energy flux e averaged over one period. They are defined by the equation 

dx / ds = e ( s )  / lel 

with initial condition x(0) = x0, where x0 is the initial point and s is a natural parameter along the curve. 
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By examining the streamlines one can obtain a clear picture of the energy flux and, in some sense, 
explain the proceeds that take place in the system. Thus, when the reflection of energy from the interface 
is insignitieant, the streamlines do not form vortices. But when the reflection coefficient is increased, 
vortices are formed, and they partition off the waveguide. 

Figures 2--4 illtmtrate the pattern of the energy flux when the interfacial boundary has a step of height 
0.1h 1. Here, unlike the ease of equal thicknesses, the streamlines are not symmetrical about the 
longitudinal axis of the waveguide, as the problem cannot be divided into symmetric and antisymmetric 
problems: a symmetric incident wave will also generate antisymmetric modes in both the reflected and 
transmitted wave :fields. The combination of media was the same as in Fig. 1. 

Figure 2 was plotted for a dimensionless frequency of 5.0, that is, before the reflection coefficient 
begins to increase. At lower frequencies, the streamlines are almost straight lines, flowing smoothly 
around the step. It is dear  from Fig. 3, plotted for a frequency of 5.1, that energy vortices appear as 
the reflection increases. Figure 4 shows the energy streamlines near maximum reflection, for a 
dimensionless frequency of 6.0. 
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